If it's not what You are looking for type in the equation solver your own equation and let us solve it.
q^2+25q=900
We move all terms to the left:
q^2+25q-(900)=0
a = 1; b = 25; c = -900;
Δ = b2-4ac
Δ = 252-4·1·(-900)
Δ = 4225
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4225}=65$$q_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(25)-65}{2*1}=\frac{-90}{2} =-45 $$q_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(25)+65}{2*1}=\frac{40}{2} =20 $
| 4=32f | | x+3=x-1=x+1=90 | | -4(2x+5)=-5x+1 | | x+3=x-1=x+1= | | 30x-18=30 | | 2x+3=4x- | | 20=50÷x | | 2+40t-17t^2=0 | | 7(6p-2)-8(4p-3)=2 | | 14x+7=25-5x-12+9x | | x+2=11/19+8/9x | | 9=141+a | | 6(x+2)=-5(7+x)-8 | | 0.02=k8 | | 3(x+2)=2(18-x) | | x.5=6 | | x.15=4 | | P5x-14=8x+4 | | 132=48-6x/5 | | 2x^2=164 | | 7m-14=17 | | 9x –32 –6x = 2x + 19 | | 5(4e+2)=100 | | 5(x+7)=5x+35= | | (10x-5)+(9x+5)=180 | | 7x-1=17x+13 | | 7t-5=-3t-15 | | -3x+8=2x–13 | | 0,45x+1,4-0,2×=3,9-× | | -2x+8=x+20 | | x–7=92 | | 10x=5+9x |